服务器 
首页 > 服务器 > 浏览文章

Apache Spark 2.0 在作业完成时却花费很长时间结束

(编辑:jimmy 日期: 2025/1/13 浏览:3 次 )

现象

大家在使用 Apache Spark 2.x 的时候可能会遇到这种现象:虽然我们的 Spark Jobs 已经全部完成了,但是我们的程序却还在执行。比如我们使用 Spark SQL 去执行一些 SQL,这个 SQL 在最后生成了大量的文件。然后我们可以看到,这个 SQL 所有的 Spark Jobs 其实已经运行完成了,但是这个查询语句还在运行。通过日志,我们可以看到 driver 节点正在一个一个地将 tasks 生成的文件移动到最终表的目录下面,当我们作业生成的文件很多的情况下,就很容易产生这种现象。本文将给大家介绍一种方法来解决这个问题。

为什么会造成这个现象

Spark 2.x 用到了 Hadoop 2.x,其将生成的文件保存到 HDFS 的时候,最后会调用了 saveAsHadoopFile,而这个函数在里面用到了 FileOutputCommitter,如下:

Apache Spark 2.0 在作业完成时却花费很长时间结束

问题就出在了 Hadoop 2.x 的 FileOutputCommitter 实现FileOutputCommitter 里面有两个值得注意的方法:commitTask 和 commitJob。在 Hadoop 2.x 的FileOutputCommitter 实现里面,mapreduce.fileoutputcommitter.algorithm.version 参数控制着 commitTask 和 commitJob 的工作方式。具体代码如下(为了说明方便,我去掉了无关紧要的语句,完整代码可以参见 FileOutputCommitter.java):

Apache Spark 2.0 在作业完成时却花费很长时间结束

大家可以看到 commitTask 方法里面,有个条件判断 algorithmVersion == 1,这个就是 mapreduce.fileoutputcommitter.algorithm.version 参数的值,默认为1;如果这个参数为1,那么在 Task 完成的时候,是将 Task 临时生成的数据移到 task 的对应目录下,然后再在 commitJob 的时候移到最终作业输出目录,而这个参数,在 Hadoop 2.x 的默认值就是 1!这也就是为什么我们看到 job 完成了,但是程序还在移动数据,从而导致整个作业尚未完成,而且最后是由 Spark 的 Driver 执行 commitJob 函数的,所以执行的慢也是有到底的。

而我们可以看到,如果我们将 mapreduce.fileoutputcommitter.algorithm.version 参数的值设置为 2,那么在 commitTask 执行的时候,就会调用 mergePaths 方法直接将 Task 生成的数据从 Task 临时目录移动到程序最后生成目录。而在执行 commitJob 的时候,直接就不用移动数据了,自然会比默认的值要快很多。

注意,其实在 Hadoop 2.7.0 之前版本,我们可以将 mapreduce.fileoutputcommitter.algorithm.version 参数设置为非1的值就可以实现这个目的,因为程序里面并没有限制这个值一定为2,。不过到了 Hadoop 2.7.0,mapreduce.fileoutputcommitter.algorithm.version 参数的值必须为1或2,具体参见 MAPREDUCE-4815。

怎么在 Spark 里面设置这个参数

问题已经找到了,我们可以在程序里面解决这个问题。有以下几种方法:

  • 直接在 conf/spark-defaults.conf 里面设置 spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version 2,这个是全局影响的。
  • 直接在 Spark 程序里面设置,spark.conf.set("mapreduce.fileoutputcommitter.algorithm.version", "2"),这个是作业级别的。
  • 如果你是使用 Dataset API 写数据到 HDFS,那么你可以这么设置 dataset.write.option("mapreduce.fileoutputcommitter.algorithm.version", "2")。

不过如果你的 Hadoop 版本为 3.x,mapreduce.fileoutputcommitter.algorithm.version 参数的默认值已经设置为2了,具体参见 MAPREDUCE-6336 和 MAPREDUCE-6406。

因为这个参数对性能有一些影响,所以到了 Spark 2.2.0,这个参数已经记录在 Spark 配置文档里面了 configuration.html,具体参见 SPARK-20107。

总结

以上所述是小编给大家介绍的Apache Spark 2.0 在作业完成时却花费很长时间结束,希望对大家有所帮助!

上一篇:Windows 2019 激活教程详解(Office2019)
下一篇:Docker学习之Container容器的具体使用